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What is a Radar Warning Receiver
 A conceptual view of an RWR

We are interested in optimizing the EI



 Ranking identification algorithms
 Provide formulӕ for algorithm analysis

 Provide a basis for comparing algorithms 
 Provide a basis for tradeoff analysis

 Using all emitters during a time slice
 Emitters for all theaters

 Increase time/space scalability

Goals 



Assumptions
 Single processor/single core 

 Performance is given as Big ‘O’, O(N)
 O(N) : work = c N + k
 Worst case analysis is done

 Total of 4096 (212) virtual emitters
 Each mode of a multi-mode emitter becomes a virtual 

emitter
 4096 virtual emitters can represent < 4096 real emitters

 Data is aligned on a 16-bit boundary
 The PTDW is the sole source of input emitter data

 Types of PTDW Data
● Discrete Data, e.g., polarization (1 byte)
● Ranged Data, e.g., frequency (4 bytes)



Assumptions
 Actual statistics are not known
 Each emitter definition is 27 bytes

 Ranged Data, 8 bytes ([low, high])
 Frequency (f) ,
 pulse recurrence interval (PRI) 
 pulse width (PW)

 Discrete Data, (1 byte)
 Polarization
 D1
 D2

 Call it 28 bytes



Classical Algorithm
Linear Emitter Search
 Emitter space is 212 emitters times 28 bytes = 114,688 bytes
 Algorithm

for (all input PTDWs)
if (func(PTDW) == true) do something }

func(PTDW) {   
  for (all emitters) { 

         if (Polarization == input) then 
            if (D1 == input) then 
              if (D2 == input) then 
              if (flow <= input <= fhigh) then

                   if (PRIlow <= input <= PRIhigh) then 
                     if (PWlow <= input <= PWhigh) then 
                       return true; } 
     return false;}



Classical Analysis

 Work done definition
 Function call overhead can be ignored

 Either copy or inline the function

 Work for each discrete check is ‘1’
if (discrete == true)

 Work for each range check is ‘2’
  if (rangelow <= input) &&
  if (input <= rangehigh)

 Work = N * (2 * #range + #discrete)



Classical Work Analysis
Linear Emitter Search

 Work = 4096 * (3 * 2 + 3) = 36,864 worst case

best expected worst space work

O(1)
1

O(N/2)
2048

O(N)
4096

114,688 
bytes

36,864



Linear Emitter Search Optimization
 Four possibilities for optimization are:

 Include only Theater Emitter Data

 Threat Precedence

 Work Reduction

 Hybrid Search

 All optimizations use a version of the Classical Algorithm

 All Classical Algorithms used the same algorithm

 Additional optimizations do not add a benefit



Classical Algorithm
Theater Emitter Optimization
 Restrict emitter data to expected Theater emitters 

 Assume 1024 emitters / theater

 Work reduction is 75%

 Requires knowledge off Theater emitters

 Requires operational updates for each Theater

best expected worst space work

O(1)
1

O(N/2)
512

O(N)
1024

28,872 
bytes

9,216



Classical Algorithm
Threat Precedence
 Order the emitter table by descending threats

 Imminent death first, cell phone last

 Assume 29 threats and 212 – 29 non-threats

 Threat emitter identification probe count

 Non-threat emitter identification probe count

best expected worst

O(1)
1

O(K/2)
256

O(K)
512

best expected worst

O(1)
513

O(N/2)
2304

O(N)
4096



Classical Algorithm
Work Reduction
 Reorder the ‘if’ statements

 ‘if’ statements are chosen by the size of associated emitter populations
● Precedence is given to the most uniform population
● Prefer discrete checks over range checks

 For example, if polarization has 8 states and each state contains 1/8 of the 
emitters then

 Checking for polarization first eliminates 3,584 emitters with one check

 Work = 3,584 * (1) + 512 * (2*3 + 3) = 8,192

 Worst case analysis



Classical Algorithm
Work Reduction
 Work

 No change in the number of probes or space

 Decrease in work / emitter

 Work reduction is 78%

 All theater emitter data is used

best expected worst space work

O(1)
1

O(N/2)
2048

O(N)
4096

114,688 
bytes

8,192



Semi-Classical Algorithm
Hybrid
 Suppose the discretes are packaged into a single computer word

 Signature = polarization | D1 | D2

 Suppose there are 256 legal signatures

 212 / 28 = 16 emitters / signature

 Construct a signature for each emitter

 Group emitters with the same signature into a list

 Factor out the discretes from the emitter data base

 Do a binary search on the signature list and a linear search on the emitter 
list



Semi-Classical Algorithm
Hybrid Algorithm
 Algorithm
  for (all PTDWS) {  

  construct a signature(input PTDW) 
  do a binary search of the signature list
 if (func(PTDW,list) == true) do something }
func(PTDW, emitter list) {
 for (all emitters) {
   if (flow <= input <= fhigh) then
     if (PRIlow <= input <= PRIhigh) then
       if (PWlow <= input <= PWhigh) then
         return true; }
 return false;}



Semi-Classical Algorithm
Hybrid
 Space

 Discrete data is factored out of emitter definitions

 Emitter data base dominates signature data
 Total size = signature size + range data size

 Work = 1.5 * (8 * (1)) + 16 * (6) = 108

 Work reduction is 99.7%

 Cost (S= #signatures, K = #emitters in list)
best expected worst space work

O(1)
9

O(log2S) + K/2
16

O(log2S) + K
24

99,328 
bytes

108



Neo-Classical Algorithm
Hybrid

 In the Hybrid Algorithm a linear search is done on range data
● A binary search is done with the discrete signature
● A linear search is done on the emitter list

● Range data checks are the most expensive

 It is possible to convert emitter range data to a discrete number

 Making it possible to construct a signature containing all of the PTDW 
data



Neo-Classical Algorithm
Range Decimation
 Suppose we have four frequency ranges

 f1, f2, f3, f4 

 And 

 f2 and f3 are wholly contained in f1,

 f2 intersects f3, and 

 f4 is disjoint

 Graphically
               



Neo-Classical Algorithm
Range Decimation
 This decomposes into the following regions

 The regions are disjoint

 An emitter frequency range can be in one or more ranges

 An emitter frequency boundary, flow and fhigh, must be on a range 
boundary



Neo-Classical Algorithm
Range Decimation
 Range R(i)high ≈ R(i+1)low

 Sequential ranges are disjoint

 [Rlow, Rhigh)i, < [Rlow, Rhigh)i(i+1)

 A sorted range table can be constructed

 table = {R(1)low, R(2)low ... R(k)high}

 A Range Decimation Table is required for f, PRI, PW

 For an input value, a binary table search will yield the decimated range 
containing the value

 If the range is Ri then the decimated number is i



Neo-Classical Algorithm
Signature Construction
 Signature creation

 A discrete enumeration field requires log2K + 1 bits on the number of 
enumerations, e.g., 
 If there are 5 polarizations then 3 bits must be used

 Reserve enough bits for the size of each Range Table
 11 bits are needed for 1024 ranges

 Pack the result

 Sort the signatures



Neo-Classical Algorithm
Signature Algorithm
 Note:  virtual emitters are created for each range containing the emitter

 This increases the size of the signature table

 The discrete data and decimated values are packed into the signature

 Algorithm

  for (all PTDW) {
  signature = polarization | D1 | D2 
  for (all range fields in PTDW) {
     signature |= get(PTDW.range, range table)}
    emitter = BinarySearch(signature) }



Neo-Classical Algorithm
Costs
 Assume

 f has 8192 (213) decimated ranges

 PW, PRI each have 512 (29) decimated ranges

 Polarization, D1 and D2 each have 8 values

 Requires 3 bits for each item

 Signature size is 5 bytes (40 bits = 13 + 9 + 9 + 3*3)

 Call it 6 bytes

 All fields are factored out of the emitter data base, leaving it empty



Neo-Classical Algorithm
Signature Search
 Assume 

 Number Signatures = 8,192

 Signature Space = 65,536 bytes = 6 * 8,192 bytes

 Decimated ranges = 36,864 bytes

 Work = 1.5 * (13 + 9 + 9 + 13) = 66

 Work Reduction is 99.8%

 Work
best expected worst space work

O(1)
4

O(log2S)
44

O(log2S) 
44

102,400
bytes

66



Neo-Classical Algorithm
Signature List Analysis
 Many emitters can share the same Region, Ri.

 If two or more emitters have the same signatures then they are 
ambiguous

 The signatures can be analyzed for unneeded parameters.

 The PTDW states what is required to generate a signal 

 This is not the same as the requirements for a search

 It is possible that the signature over-represents search requirements



Summary
Scalability
 Assume 4 times the number of emitters

Algorithm expected worst Space work

Classical 8,192 16,384 458,752 147,456

Theater 2,048 4,096 114,688 38,864

Work 8,192 16,384 458,752 32,768

Precedence
   Threat
   Non-Threat

1,024
8,704

2,048
16,384

458,752 147,456

Hybrid 40 72 396,288 396

Neo-
Classical

46 46 233,472 69



Summary
Comparison
 T = number threats f = f table size

N = number emitters PRI = PRI table size
S = number signatures PW = PW table size

Algorithm expected worst space Work

Classical N/2 N 28 N 9 N

Theater N/2 N 28 N 9 N

Work N/2 N 28 N (N - K) + 9 K

Precedence
   Threat
   Non-Threat

T/2
(N+T)/2

T
N

28 N

9 T

9 N

Hybrid (log2S + N/S)/
2

log2S + N/S 4 S + 24 N 1.5   log2S + 6 N/S

Neo-
Classical

log2S log2S 6 S + 4 (f 
+ PRI + 

PWI)

1.5 (log2f + log2PRI + 

       log2PW + log2S)



Summary
Comparison

Algorithm
Probe 
Count Work Scalability Rating

Classical high high poor 4:poor

Theater poor poor poor 4:Poor

Work high moderate poor 3:good

Precedence high poor poor 4:Poor

Hybrid low low moderate 2:better

Neo-
Classical

very low very low good 1:best



Summary

 Product Related Recommendations
 Least impact: Work Reduction Algorithm
 Moderate impact: Hybrid Algorithm
 Most impact:      Signature Algorithm



The Real World
 Some things to keep in mind

 Combinatorics

 Each mode of a multi-mode emitter creates a virtual emitter
 Evaluate algorithms using your statistics

 CPU’s with large primary and secondary cache alter the work effort but 
don’t alter the result

 Multi-core CPU’s alter the work effort but don’t alter the result

 Summary: Using real world figures and/or implementations will alter the 
details but what’s good is good and what’s bad is bad.



Speculation
Front-end Algorithm Use
 A Signature is composed of two parts

 Removing dynamic data, e.g., PRI from the PTDW creates an ambiguous 
signature
 Multiple emitters with the same signature
 Multi-pulse discrimination uses multiple mono-pulse data 

Mono-Pulse Multi-Pulse

signature

PDW       PTDW



Speculation 
Front-end Algorithm Use
 The resulting structure looks like.

 At the cost of a linear search over a reduced Emitter space we get emitter 
identification in the front-end

 Use of geolocation, speed and distance is an architectural issue

PDW Emitter
1

signature

Mono-Pulse            Multi-Pulse

Emitter
2

Emitter
k

ooo 
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