
RWR Emitter Identification

 Arthur Schwarz
 slipbits@yahoo.com

 March 7, 2019
 14:00 – 15:00 EST

 19:00 – 20:00 UTC

Stephen “Muddy” Watters,
LtCol USMC (Ret)

AOC President

AOC Virtual Series made possible by:

Interested in Sponsoring the AOC Virtual Series? Click here

Gold Sponsor

https://www.crows.org/resource/resmgr/sponsors/2019_sponsorship_catalog_-_f.pdf

Presenter:

 Arthur Schwarz
slipbits@yahoo.com

mailto:slipbits@yahoo.com

RWR Emitter Identification

 Arthur Schwarz
 slipbits@yahoo.com

 March 7, 2019
 14:00 – 15:00 EST

 19:00 – 20:00 UTC

What is a Radar Warning Receiver
 A conceptual view of an RWR

We are interested in optimizing the EI

 Ranking identification algorithms
 Provide formulӕ for algorithm analysis

 Provide a basis for comparing algorithms
 Provide a basis for tradeoff analysis

 Using all emitters during a time slice
 Emitters for all theaters

 Increase time/space scalability

Goals

Assumptions
 Single processor/single core

 Performance is given as Big ‘O’, O(N)
 O(N) : work = c N + k
 Worst case analysis is done

 Total of 4096 (212) virtual emitters
 Each mode of a multi-mode emitter becomes a virtual

emitter
 4096 virtual emitters can represent < 4096 real emitters

 Data is aligned on a 16-bit boundary
 The PTDW is the sole source of input emitter data

 Types of PTDW Data
● Discrete Data, e.g., polarization (1 byte)
● Ranged Data, e.g., frequency (4 bytes)

Assumptions
 Actual statistics are not known
 Each emitter definition is 27 bytes

 Ranged Data, 8 bytes ([low, high])
 Frequency (f) ,
 pulse recurrence interval (PRI)
 pulse width (PW)

 Discrete Data, (1 byte)
 Polarization
 D1
 D2

 Call it 28 bytes

Classical Algorithm
Linear Emitter Search
 Emitter space is 212 emitters times 28 bytes = 114,688 bytes
 Algorithm

for (all input PTDWs)
if (func(PTDW) == true) do something }

func(PTDW) {
 for (all emitters) {

 if (Polarization == input) then
 if (D1 == input) then
 if (D2 == input) then
 if (flow <= input <= fhigh) then

 if (PRIlow <= input <= PRIhigh) then
 if (PWlow <= input <= PWhigh) then
 return true; }
 return false;}

Classical Analysis

 Work done definition
 Function call overhead can be ignored

 Either copy or inline the function

 Work for each discrete check is ‘1’
if (discrete == true)

 Work for each range check is ‘2’
 if (rangelow <= input) &&
 if (input <= rangehigh)

 Work = N * (2 * #range + #discrete)

Classical Work Analysis
Linear Emitter Search

 Work = 4096 * (3 * 2 + 3) = 36,864 worst case

best expected worst space work

O(1)
1

O(N/2)
2048

O(N)
4096

114,688
bytes

36,864

Linear Emitter Search Optimization
 Four possibilities for optimization are:

 Include only Theater Emitter Data

 Threat Precedence

 Work Reduction

 Hybrid Search

 All optimizations use a version of the Classical Algorithm

 All Classical Algorithms used the same algorithm

 Additional optimizations do not add a benefit

Classical Algorithm
Theater Emitter Optimization
 Restrict emitter data to expected Theater emitters

 Assume 1024 emitters / theater

 Work reduction is 75%

 Requires knowledge off Theater emitters

 Requires operational updates for each Theater

best expected worst space work

O(1)
1

O(N/2)
512

O(N)
1024

28,872
bytes

9,216

Classical Algorithm
Threat Precedence
 Order the emitter table by descending threats

 Imminent death first, cell phone last

 Assume 29 threats and 212 – 29 non-threats

 Threat emitter identification probe count

 Non-threat emitter identification probe count

best expected worst

O(1)
1

O(K/2)
256

O(K)
512

best expected worst

O(1)
513

O(N/2)
2304

O(N)
4096

Classical Algorithm
Work Reduction
 Reorder the ‘if’ statements

 ‘if’ statements are chosen by the size of associated emitter populations
● Precedence is given to the most uniform population
● Prefer discrete checks over range checks

 For example, if polarization has 8 states and each state contains 1/8 of the
emitters then

 Checking for polarization first eliminates 3,584 emitters with one check

 Work = 3,584 * (1) + 512 * (2*3 + 3) = 8,192

 Worst case analysis

Classical Algorithm
Work Reduction
 Work

 No change in the number of probes or space

 Decrease in work / emitter

 Work reduction is 78%

 All theater emitter data is used

best expected worst space work

O(1)
1

O(N/2)
2048

O(N)
4096

114,688
bytes

8,192

Semi-Classical Algorithm
Hybrid
 Suppose the discretes are packaged into a single computer word

 Signature = polarization | D1 | D2

 Suppose there are 256 legal signatures

 212 / 28 = 16 emitters / signature

 Construct a signature for each emitter

 Group emitters with the same signature into a list

 Factor out the discretes from the emitter data base

 Do a binary search on the signature list and a linear search on the emitter
list

Semi-Classical Algorithm
Hybrid Algorithm
 Algorithm
 for (all PTDWS) {

 construct a signature(input PTDW)
 do a binary search of the signature list
 if (func(PTDW,list) == true) do something }
func(PTDW, emitter list) {
 for (all emitters) {
 if (flow <= input <= fhigh) then
 if (PRIlow <= input <= PRIhigh) then
 if (PWlow <= input <= PWhigh) then
 return true; }
 return false;}

Semi-Classical Algorithm
Hybrid
 Space

 Discrete data is factored out of emitter definitions

 Emitter data base dominates signature data
 Total size = signature size + range data size

 Work = 1.5 * (8 * (1)) + 16 * (6) = 108

 Work reduction is 99.7%

 Cost (S= #signatures, K = #emitters in list)
best expected worst space work

O(1)
9

O(log2S) + K/2
16

O(log2S) + K
24

99,328
bytes

108

Neo-Classical Algorithm
Hybrid

 In the Hybrid Algorithm a linear search is done on range data
● A binary search is done with the discrete signature
● A linear search is done on the emitter list

● Range data checks are the most expensive

 It is possible to convert emitter range data to a discrete number

 Making it possible to construct a signature containing all of the PTDW
data

Neo-Classical Algorithm
Range Decimation
 Suppose we have four frequency ranges

 f1, f2, f3, f4

 And

 f2 and f3 are wholly contained in f1,

 f2 intersects f3, and

 f4 is disjoint

 Graphically

Neo-Classical Algorithm
Range Decimation
 This decomposes into the following regions

 The regions are disjoint

 An emitter frequency range can be in one or more ranges

 An emitter frequency boundary, flow and fhigh, must be on a range
boundary

Neo-Classical Algorithm
Range Decimation
 Range R(i)high ≈ R(i+1)low

 Sequential ranges are disjoint

 [Rlow, Rhigh)i, < [Rlow, Rhigh)i(i+1)

 A sorted range table can be constructed

 table = {R(1)low, R(2)low ... R(k)high}

 A Range Decimation Table is required for f, PRI, PW

 For an input value, a binary table search will yield the decimated range
containing the value

 If the range is Ri then the decimated number is i

Neo-Classical Algorithm
Signature Construction
 Signature creation

 A discrete enumeration field requires log2K + 1 bits on the number of
enumerations, e.g.,
 If there are 5 polarizations then 3 bits must be used

 Reserve enough bits for the size of each Range Table
 11 bits are needed for 1024 ranges

 Pack the result

 Sort the signatures

Neo-Classical Algorithm
Signature Algorithm
 Note: virtual emitters are created for each range containing the emitter

 This increases the size of the signature table

 The discrete data and decimated values are packed into the signature

 Algorithm

 for (all PTDW) {
 signature = polarization | D1 | D2
 for (all range fields in PTDW) {
 signature |= get(PTDW.range, range table)}
 emitter = BinarySearch(signature) }

Neo-Classical Algorithm
Costs
 Assume

 f has 8192 (213) decimated ranges

 PW, PRI each have 512 (29) decimated ranges

 Polarization, D1 and D2 each have 8 values

 Requires 3 bits for each item

 Signature size is 5 bytes (40 bits = 13 + 9 + 9 + 3*3)

 Call it 6 bytes

 All fields are factored out of the emitter data base, leaving it empty

Neo-Classical Algorithm
Signature Search
 Assume

 Number Signatures = 8,192

 Signature Space = 65,536 bytes = 6 * 8,192 bytes

 Decimated ranges = 36,864 bytes

 Work = 1.5 * (13 + 9 + 9 + 13) = 66

 Work Reduction is 99.8%

 Work
best expected worst space work

O(1)
4

O(log2S)
44

O(log2S)
44

102,400
bytes

66

Neo-Classical Algorithm
Signature List Analysis
 Many emitters can share the same Region, Ri.

 If two or more emitters have the same signatures then they are
ambiguous

 The signatures can be analyzed for unneeded parameters.

 The PTDW states what is required to generate a signal

 This is not the same as the requirements for a search

 It is possible that the signature over-represents search requirements

Summary
Scalability
 Assume 4 times the number of emitters

Algorithm expected worst Space work

Classical 8,192 16,384 458,752 147,456

Theater 2,048 4,096 114,688 38,864

Work 8,192 16,384 458,752 32,768

Precedence
 Threat
 Non-Threat

1,024
8,704

2,048
16,384

458,752 147,456

Hybrid 40 72 396,288 396

Neo-
Classical

46 46 233,472 69

Summary
Comparison
 T = number threats f = f table size

N = number emitters PRI = PRI table size
S = number signatures PW = PW table size

Algorithm expected worst space Work

Classical N/2 N 28 N 9 N

Theater N/2 N 28 N 9 N

Work N/2 N 28 N (N - K) + 9 K

Precedence
 Threat
 Non-Threat

T/2
(N+T)/2

T
N

28 N

9 T

9 N

Hybrid (log2S + N/S)/
2

log2S + N/S 4 S + 24 N 1.5 log2S + 6 N/S

Neo-
Classical

log2S log2S 6 S + 4 (f
+ PRI +

PWI)

1.5 (log2f + log2PRI +

 log2PW + log2S)

Summary
Comparison

Algorithm
Probe
Count Work Scalability Rating

Classical high high poor 4:poor

Theater poor poor poor 4:Poor

Work high moderate poor 3:good

Precedence high poor poor 4:Poor

Hybrid low low moderate 2:better

Neo-
Classical

very low very low good 1:best

Summary

 Product Related Recommendations
 Least impact: Work Reduction Algorithm
 Moderate impact: Hybrid Algorithm
 Most impact: Signature Algorithm

The Real World
 Some things to keep in mind

 Combinatorics

 Each mode of a multi-mode emitter creates a virtual emitter
 Evaluate algorithms using your statistics

 CPU’s with large primary and secondary cache alter the work effort but
don’t alter the result

 Multi-core CPU’s alter the work effort but don’t alter the result

 Summary: Using real world figures and/or implementations will alter the
details but what’s good is good and what’s bad is bad.

Speculation
Front-end Algorithm Use
 A Signature is composed of two parts

 Removing dynamic data, e.g., PRI from the PTDW creates an ambiguous
signature
 Multiple emitters with the same signature
 Multi-pulse discrimination uses multiple mono-pulse data

Mono-Pulse Multi-Pulse

signature

PDW PTDW

Speculation
Front-end Algorithm Use
 The resulting structure looks like.

 At the cost of a linear search over a reduced Emitter space we get emitter
identification in the front-end

 Use of geolocation, speed and distance is an architectural issue

PDW Emitter
1

signature

Mono-Pulse Multi-Pulse

Emitter
2

Emitter
k

ooo

	Slide 1
	Slide 2
	AOC Virtual Series made possible by:
	Presenter:
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

