
RWR Emitter Identification

 Arthur Schwarz
 slipbits@yahoo.com

 March 7, 2019
 14:00 – 15:00 EST

 19:00 – 20:00 UTC

Stephen “Muddy” Watters,
LtCol USMC (Ret)

AOC President

AOC Virtual Series made possible by:

Interested in Sponsoring the AOC Virtual Series? Click here

Gold Sponsor

https://www.crows.org/resource/resmgr/sponsors/2019_sponsorship_catalog_-_f.pdf

Presenter:

 Arthur Schwarz
slipbits@yahoo.com

mailto:slipbits@yahoo.com

RWR Emitter Identification

 Arthur Schwarz
 slipbits@yahoo.com

 March 7, 2019
 14:00 – 15:00 EST

 19:00 – 20:00 UTC

What is a Radar Warning Receiver
 A conceptual view of an RWR

We are interested in optimizing the EI

 Ranking identification algorithms
 Provide formulӕ for algorithm analysis

 Provide a basis for comparing algorithms
 Provide a basis for tradeoff analysis

 Using all emitters during a time slice
 Emitters for all theaters

 Increase time/space scalability

Goals

Assumptions
 Single processor/single core

 Performance is given as Big ‘O’, O(N)
 O(N) : work = c N + k
 Worst case analysis is done

 Total of 4096 (212) virtual emitters
 Each mode of a multi-mode emitter becomes a virtual

emitter
 4096 virtual emitters can represent < 4096 real emitters

 Data is aligned on a 16-bit boundary
 The PTDW is the sole source of input emitter data

 Types of PTDW Data
● Discrete Data, e.g., polarization (1 byte)
● Ranged Data, e.g., frequency (4 bytes)

Assumptions
 Actual statistics are not known
 Each emitter definition is 27 bytes

 Ranged Data, 8 bytes ([low, high])
 Frequency (f) ,
 pulse recurrence interval (PRI)
 pulse width (PW)

 Discrete Data, (1 byte)
 Polarization
 D1
 D2

 Call it 28 bytes

Classical Algorithm
Linear Emitter Search
 Emitter space is 212 emitters times 28 bytes = 114,688 bytes
 Algorithm

for (all input PTDWs)
if (func(PTDW) == true) do something }

func(PTDW) {
 for (all emitters) {

 if (Polarization == input) then
 if (D1 == input) then
 if (D2 == input) then
 if (flow <= input <= fhigh) then

 if (PRIlow <= input <= PRIhigh) then
 if (PWlow <= input <= PWhigh) then
 return true; }
 return false;}

Classical Analysis

 Work done definition
 Function call overhead can be ignored

 Either copy or inline the function

 Work for each discrete check is ‘1’
if (discrete == true)

 Work for each range check is ‘2’
 if (rangelow <= input) &&
 if (input <= rangehigh)

 Work = N * (2 * #range + #discrete)

Classical Work Analysis
Linear Emitter Search

 Work = 4096 * (3 * 2 + 3) = 36,864 worst case

best expected worst space work

O(1)
1

O(N/2)
2048

O(N)
4096

114,688
bytes

36,864

Linear Emitter Search Optimization
 Four possibilities for optimization are:

 Include only Theater Emitter Data

 Threat Precedence

 Work Reduction

 Hybrid Search

 All optimizations use a version of the Classical Algorithm

 All Classical Algorithms used the same algorithm

 Additional optimizations do not add a benefit

Classical Algorithm
Theater Emitter Optimization
 Restrict emitter data to expected Theater emitters

 Assume 1024 emitters / theater

 Work reduction is 75%

 Requires knowledge off Theater emitters

 Requires operational updates for each Theater

best expected worst space work

O(1)
1

O(N/2)
512

O(N)
1024

28,872
bytes

9,216

Classical Algorithm
Threat Precedence
 Order the emitter table by descending threats

 Imminent death first, cell phone last

 Assume 29 threats and 212 – 29 non-threats

 Threat emitter identification probe count

 Non-threat emitter identification probe count

best expected worst

O(1)
1

O(K/2)
256

O(K)
512

best expected worst

O(1)
513

O(N/2)
2304

O(N)
4096

Classical Algorithm
Work Reduction
 Reorder the ‘if’ statements

 ‘if’ statements are chosen by the size of associated emitter populations
● Precedence is given to the most uniform population
● Prefer discrete checks over range checks

 For example, if polarization has 8 states and each state contains 1/8 of the
emitters then

 Checking for polarization first eliminates 3,584 emitters with one check

 Work = 3,584 * (1) + 512 * (2*3 + 3) = 8,192

 Worst case analysis

Classical Algorithm
Work Reduction
 Work

 No change in the number of probes or space

 Decrease in work / emitter

 Work reduction is 78%

 All theater emitter data is used

best expected worst space work

O(1)
1

O(N/2)
2048

O(N)
4096

114,688
bytes

8,192

Semi-Classical Algorithm
Hybrid
 Suppose the discretes are packaged into a single computer word

 Signature = polarization | D1 | D2

 Suppose there are 256 legal signatures

 212 / 28 = 16 emitters / signature

 Construct a signature for each emitter

 Group emitters with the same signature into a list

 Factor out the discretes from the emitter data base

 Do a binary search on the signature list and a linear search on the emitter
list

Semi-Classical Algorithm
Hybrid Algorithm
 Algorithm
 for (all PTDWS) {

 construct a signature(input PTDW)
 do a binary search of the signature list
 if (func(PTDW,list) == true) do something }
func(PTDW, emitter list) {
 for (all emitters) {
 if (flow <= input <= fhigh) then
 if (PRIlow <= input <= PRIhigh) then
 if (PWlow <= input <= PWhigh) then
 return true; }
 return false;}

Semi-Classical Algorithm
Hybrid
 Space

 Discrete data is factored out of emitter definitions

 Emitter data base dominates signature data
 Total size = signature size + range data size

 Work = 1.5 * (8 * (1)) + 16 * (6) = 108

 Work reduction is 99.7%

 Cost (S= #signatures, K = #emitters in list)
best expected worst space work

O(1)
9

O(log2S) + K/2
16

O(log2S) + K
24

99,328
bytes

108

Neo-Classical Algorithm
Hybrid

 In the Hybrid Algorithm a linear search is done on range data
● A binary search is done with the discrete signature
● A linear search is done on the emitter list

● Range data checks are the most expensive

 It is possible to convert emitter range data to a discrete number

 Making it possible to construct a signature containing all of the PTDW
data

Neo-Classical Algorithm
Range Decimation
 Suppose we have four frequency ranges

 f1, f2, f3, f4

 And

 f2 and f3 are wholly contained in f1,

 f2 intersects f3, and

 f4 is disjoint

 Graphically

Neo-Classical Algorithm
Range Decimation
 This decomposes into the following regions

 The regions are disjoint

 An emitter frequency range can be in one or more ranges

 An emitter frequency boundary, flow and fhigh, must be on a range
boundary

Neo-Classical Algorithm
Range Decimation
 Range R(i)high ≈ R(i+1)low

 Sequential ranges are disjoint

 [Rlow, Rhigh)i, < [Rlow, Rhigh)i(i+1)

 A sorted range table can be constructed

 table = {R(1)low, R(2)low ... R(k)high}

 A Range Decimation Table is required for f, PRI, PW

 For an input value, a binary table search will yield the decimated range
containing the value

 If the range is Ri then the decimated number is i

Neo-Classical Algorithm
Signature Construction
 Signature creation

 A discrete enumeration field requires log2K + 1 bits on the number of
enumerations, e.g.,
 If there are 5 polarizations then 3 bits must be used

 Reserve enough bits for the size of each Range Table
 11 bits are needed for 1024 ranges

 Pack the result

 Sort the signatures

Neo-Classical Algorithm
Signature Algorithm
 Note: virtual emitters are created for each range containing the emitter

 This increases the size of the signature table

 The discrete data and decimated values are packed into the signature

 Algorithm

 for (all PTDW) {
 signature = polarization | D1 | D2
 for (all range fields in PTDW) {
 signature |= get(PTDW.range, range table)}
 emitter = BinarySearch(signature) }

Neo-Classical Algorithm
Costs
 Assume

 f has 8192 (213) decimated ranges

 PW, PRI each have 512 (29) decimated ranges

 Polarization, D1 and D2 each have 8 values

 Requires 3 bits for each item

 Signature size is 5 bytes (40 bits = 13 + 9 + 9 + 3*3)

 Call it 6 bytes

 All fields are factored out of the emitter data base, leaving it empty

Neo-Classical Algorithm
Signature Search
 Assume

 Number Signatures = 8,192

 Signature Space = 65,536 bytes = 6 * 8,192 bytes

 Decimated ranges = 36,864 bytes

 Work = 1.5 * (13 + 9 + 9 + 13) = 66

 Work Reduction is 99.8%

 Work
best expected worst space work

O(1)
4

O(log2S)
44

O(log2S)
44

102,400
bytes

66

Neo-Classical Algorithm
Signature List Analysis
 Many emitters can share the same Region, Ri.

 If two or more emitters have the same signatures then they are
ambiguous

 The signatures can be analyzed for unneeded parameters.

 The PTDW states what is required to generate a signal

 This is not the same as the requirements for a search

 It is possible that the signature over-represents search requirements

Summary
Scalability
 Assume 4 times the number of emitters

Algorithm expected worst Space work

Classical 8,192 16,384 458,752 147,456

Theater 2,048 4,096 114,688 38,864

Work 8,192 16,384 458,752 32,768

Precedence
 Threat
 Non-Threat

1,024
8,704

2,048
16,384

458,752 147,456

Hybrid 40 72 396,288 396

Neo-
Classical

46 46 233,472 69

Summary
Comparison
 T = number threats f = f table size

N = number emitters PRI = PRI table size
S = number signatures PW = PW table size

Algorithm expected worst space Work

Classical N/2 N 28 N 9 N

Theater N/2 N 28 N 9 N

Work N/2 N 28 N (N - K) + 9 K

Precedence
 Threat
 Non-Threat

T/2
(N+T)/2

T
N

28 N

9 T

9 N

Hybrid (log2S + N/S)/
2

log2S + N/S 4 S + 24 N 1.5 log2S + 6 N/S

Neo-
Classical

log2S log2S 6 S + 4 (f
+ PRI +

PWI)

1.5 (log2f + log2PRI +

 log2PW + log2S)

Summary
Comparison

Algorithm
Probe
Count Work Scalability Rating

Classical high high poor 4:poor

Theater poor poor poor 4:Poor

Work high moderate poor 3:good

Precedence high poor poor 4:Poor

Hybrid low low moderate 2:better

Neo-
Classical

very low very low good 1:best

Summary

 Product Related Recommendations
 Least impact: Work Reduction Algorithm
 Moderate impact: Hybrid Algorithm
 Most impact: Signature Algorithm

The Real World
 Some things to keep in mind

 Combinatorics

 Each mode of a multi-mode emitter creates a virtual emitter
 Evaluate algorithms using your statistics

 CPU’s with large primary and secondary cache alter the work effort but
don’t alter the result

 Multi-core CPU’s alter the work effort but don’t alter the result

 Summary: Using real world figures and/or implementations will alter the
details but what’s good is good and what’s bad is bad.

Speculation
Front-end Algorithm Use
 A Signature is composed of two parts

 Removing dynamic data, e.g., PRI from the PTDW creates an ambiguous
signature
 Multiple emitters with the same signature
 Multi-pulse discrimination uses multiple mono-pulse data

Mono-Pulse Multi-Pulse

signature

PDW PTDW

Speculation
Front-end Algorithm Use
 The resulting structure looks like.

 At the cost of a linear search over a reduced Emitter space we get emitter
identification in the front-end

 Use of geolocation, speed and distance is an architectural issue

PDW Emitter
1

signature

Mono-Pulse Multi-Pulse

Emitter
2

Emitter
k

ooo

	Slide 1
	Slide 2
	AOC Virtual Series made possible by:
	Presenter:
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

