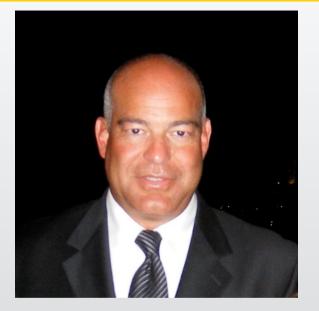
RWR Emitter Identification


Arthur Schwarz

- slipbits@sliipbits.com
- **5 Aug 2021**

Stephen "Muddy" Watters, LtCol USMC (Ret)

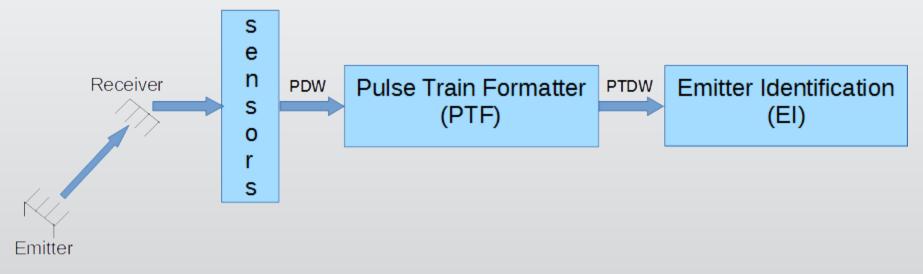
AOC President

AOC Virtual Series made possible by:

Gold Sponsor

Interested in Sponsoring the AOC Virtual Series? Click here

Presenter:



Arthur Schwarz slipbits@slipbits.com

What is a Radar Warning Receiver A conceptual view of an RWR

We are interested in optimizing the EI

Goals

- Rapid identification of an emitter.
- Using all Emitters for any theater.
- Increase time/space scalability.
 - Linear growth.

AOC VIRTUAL SERIES

Goals Search Techniques

- Hashing
- Binary Search focus of presentation
- Fuzzy Indexing

AO VIRTU

Goals Hash Function Techniques

- Perfect HF, HF, Minimally Perfect HF
- HF
 - In theory yields a O(1) performance.
 - Single item 100 probes $O(1)=1.1=\frac{100}{1000}$
 - Actual performance depends on HF.
 - Size is ≈ 1.5 # items, 1000 items, 1500 cells.

Assumptions

- Total of 4096 (2¹²) virtual emitters
 - Each mode of a multi-mode emitter becomes a virtual emitter
 - 4096 virtual emitters can represent < 4096 real emitters
- The PTDW is the sole source of emitter data

Assumptions

- PTDW Paramaters
 - Polarization (8 values == $\log_2 8 = 3$ bits)
 - Modulation type (16 values == $\log_2 16 = 4$ bits)
 - Frequency $(f) = 2^{13}$ intervals = 13 bits
 - Pulse Width (w) = 2¹⁰ intervals = 10 bits
 - Pulse Recurrence Interval (p) = 2⁹ intervals = 9 bits

PTDW to Signature Pack all parameters into a Signature

- - Total size is 39 bits
 - Round-up to 48 bits 3 16-bit words
- The set of Signatures are searchable
 - After sorting, a binary search is log₂N
 - For $N = 2^{17} = 131,072$ entries, this are 17 probes
 - 2^{20} bytes = 1,048,576 bytes
 - Hash search is O(1)

Signature Ambiguity

- Suppose two signatures are the same in the sorted list.
 - $S_i == S_{i+1}$
- This is an ambiguity and means that two virtual radars have he same PTDW parameters.
- A resolution policy is required.

Signature Overdetermined

- It is possible that one or more items in a signature can be removed without impeding the search.
 - The hardware for the item in question can be removed.
 - This translates into a reduction in cost.
- Building a radar is not the same as searching for one.

Summary

- Actual data must be used.
- Signatures yield fast EMI identification times.
- The time per probe is installation specific and can alter the effectiveness of the paradigm.

Analysis

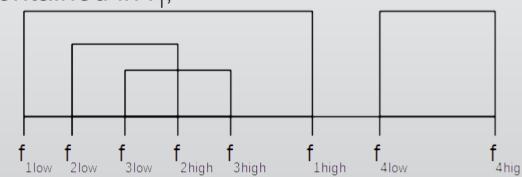
- The picture is too pretty!
- There are two types of data
 - Discrete data whose values can be enumerated
 - Continuous data whose values can not be enumerated

AOC VIRTUAL SERIES

Analysis

- Discrete data are things like:
 - Polarization (8 values): 3 bits = log₂8 bits
 - Modulation type (16 values): 4 bits = log₂16 bits
- Continuous data are things like:
 - Frequency (*f*)
 - Pulse Width (w)
 - Pulse Recurrence Interval (p)

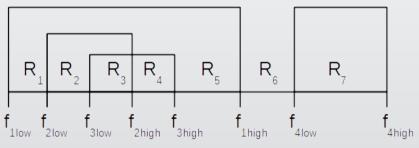
Continuous Data (frequency)


- The frequencies need to be decimated.
 - Converted from continuous data an enumerable value
 - A <u>7 Mar 2019</u> AOC Webinar described a decimation algorithm
 - C++ code for this algorithm is at https://slipbits.com/interval-search/
 - Brute force takes > O(n³)
 - Interval Analysis takes O(3n + 2n log₂2n) steps

Range Decimation Overview

- Suppose we have four frequency ranges
 - f_1, f_2, f_3, f_4
- And
 - f_2 and f_3 are wholly contained in f_1 ,
 - f_2 intersects f_3 , and
 - *f*₄ is disjoint
- Graphically

Range Decimation Overview


- Frequency intervals can not be used.
 - No sort order for a binary search.
 - A linear search is required.
- Ranges unique intervals
 - Between [fistart, f_(i+1)start), [fiend, f_(i+1)start), etc.
- Ranges define non-overlapping frequencies.
 - Ranges are ordered ($R_i < R_{i+1}$).
 - A binary search can be done on enumerable ranges.

Range Decimation Overview

This example decomposes.

- The regions are disjoint
 - An emitter can be in one or more frequency ranges
 - Range boundaries are coincident to frequency boundaries.

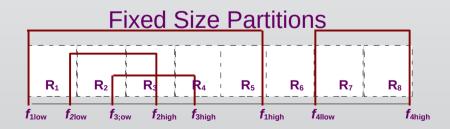
Range Decimation Overview Range Sorting

- With a precedence order ranges can be sorted.
- Since all ranges, R, are disjoint:
 - Finding an *f* in any R is unique. *f* can not be in more than one range.

Time and Space

- Actual numbers for all values are based on the statistics of the EMI objects used.
 - My values are just poor guesses.
- The total number of signatures, 2¹⁷, assumes that each of 4096 emitters have 32 signatures.
 - Signature search is 17 probes.
 - Maximum is 17 + 13 + 10 + 9 = 49 probes




- The Range sizes have been variable.
 - Ranges are a subset of a frequency interval.
- Suppose we used fixed size Ranges.
 - Then a probe is: int(f/width) = 1

Signatures may have ambiguities

- The dashed lines represent fixed sized intervals.
- Some frequency intervals are not fully contained in a fixed sized interval.
- This misrepresents the emitters in the signature set and leads to false ambiguities.
- These amguities can not be resolved programmitcally.
 - They require a search within an interval.

- With Ideal Partitions there area max of 49 probes.
 - Search interval tables (*f*, *w*, *p*) = (13, 10, 9)
 - Search Signature list (17)
- With Fixed Partitions there are:
 - Search interval tables (f, w, p) = (1, 1, 1)
 - Search Signature list (17) + bucket search
- If the bucket search < 29:
 - Using Fixed Partitions is better than Ideal Partitions

Data Growth

- Worst case a new radar is not wholly contained in existing (*f*, *w*, *p*) intervals.
 - This increases the number of ranges by 6 = (2, 2, 2)
 - The number of signatures increases by one for each range the new radar is in plus 1 for each existing radar in the new interval.